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Abstract

Anna Jenkins
B.S., Appalachian State University

Thesis Director: Holly Hirst

Within linear programming, chance constraints offer a method for solving problems that

contain random variables within the objective or constraints. This thesis will provide an

overview of linear programming and chance constraints with random variables that can be

modeled with the normal distribution. A discussion of both single and joint constraints,

the history of the development of the method, and survey of current applications is in-

cluded.
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Chapter 1: Introduction to Linear Programming

To begin our discussion of chance constraints, we must first start with a firm understand-

ing of linear programming, as well as the more general term of operations research. Overall,

operations research refers to using a procedural method to discover the most efficient way

for an operation to be performed. Similar to the scientific method, steps are performed to

conclude mathematically and definitively that the final method is in fact the best course of

action for the operation. Types of operations that this may be referring to include business

operations or wartime supplies. The cementation of operations research occurred during

World War II, when the need to allocate war supplies in the most efficient method possible

was an urgent need, and new processes were created to find these optimal solutions. Follow-

ing the end of the war, operations research was then brought to other fields outside of the

military, and its broad range of potential uses has lead to its use in almost all fields [6].

Many of the problems that are solved by operations research fall into the more specific

category of linear programming. Linear programming is a method to solve problems of

operations research that contain multiple constraints and an objective, with all functions

being of a linear nature.

As a simplistic example, these functions often include several variables representing quan-

tities of products to produce, with limited resources (labor, raw materials, space, etc.) being

represented by the constraints, with the value of each variable quantity shown in the objec-

tive function. This is known as a resource-allocation problem. Constraints for these problems

can range from the constraints on each separate resource, constraints on the amount of the

resources together, a particular proportionality of resources needing to be maintained, and
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so on. Problems also often contain non-negativity constraints to ensure final variable quan-

tities are positive. The goal of this particular form of linear programming problem is to find

the combination of resources that fit within the constraints, and will maximize the objective

function. Note however, that though objective functions often are maximized due to often

being representative of profit, the problem may instead call for the function to be minimized,

depending on the context of the problem. The outline of the equations for this problem is

shown below for n products and m constraints. The below notations for both linear pro-

gramming and chance constraints are adapted from those found in Hillier and Liebermann

[6].

• The variables: xj represents the quantity of the jth product to produce, j = 1, ..., n

• The constraints:

– Resource constraints, with ai,j representing the amount of resource i needed for

one unit of product j, and bi representing the amount of resource i available:

n∑
j=1

ai,jxj ≤ bi, i = 1, ...,m

– Non-negativity constraints, to ensure negative quantities are excluded: xi ≥ 0,

i = 1, ..., n

• The objective to be maximized, with cj representing the value of one unit of the jth

product to produce:

Z =
n∑

j=1

cjxj

A Simple Example

When linear programming problems contain only two variables, they can be viewed and

solved graphically, which gives an excellent visual for the process behind solving linear pro-

gramming problems. Here is the set up where we have used the more traditional x and y to
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represent the variables.

The variables:

• x: Quantity of product 1

• y: Quantity of product 2

The Constraints:

• a1,1 x+ a1,2 y ≤ b1

• a2,1 x+ a2,2 y ≤ b2

• x, y ≥ 0

Objective: Maximize Z = c1x+ c2y

When graphing two variable linear programming problems, the line created by the equa-

tion for each constraint function acts as a boundary that a solution must be within. Some

constraints may already be satisfied by other constraints that are more strict. Together,

these functions should create a complete boundary around an inner range, with this inner

range representing the range of possible solutions. This area is called the feasible region,

and all possible solutions within the region are considered feasible solutions that satisfy

all constraints. Solutions not within this bounded region fail to satisfy at least one of

the constraints, and these are considered infeasible solutions existing within the infeasible

range.

To determine the optimal solution from within the feasible region, the objective function

must then be added to the graph. For each inputted value of Z, we can see the combinations

of x and y that lie along the slope of Z and result in this value, and which of these com-

binations exist in the feasible and infeasible regions. Our Z value can increase until it only

contains one solution within the feasible region, or lies along an edge of the feasible region.

This shows where the optimal solution to our problem lies, or if a range of solutions along an

edge may all result in the optimal solution. This is known as the corner point feasible (CPF)

solution. The optimal solution to a problem lies at a corner of the feasible region.
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Two Variable Example: A book manufacturer produces both hard cover and paperback

versions for a certain book. Both versions of the book take their printers 12 minutes to

produce all pages to the book, and each of their five machines can only be turned on for 6

hours a day, for a total of 1,800 minutes of possible printing time per day. The producer also

only has labor available to finalize the production of up to 100 hard cover copies each day,

and up to 120 paper cover copies each day, each unaffected by one another. If paperback

versions will be bought for $3 each and hard cover version for $5, what is the optimal number

of paperback and hardcover versions of the book that the producer should make each day to

maximize profit, and what is that profit?

Solution: Begin by setting up the example as we had shown previously.

The Variables:

• Number of paperback books to be made: x

• Number of hard cover books to be made: y

The Constraints:

• Amount of daily printing time: 12x+ 12y ≤ 1, 800

• Labor available for book x: x ≤ 120

• Labor available for book y: y ≤ 100

• Non-negativity constraints: x, y ≥ 0

Objective: Maximize Revenue Z = 3x+ 5y

We will now be able to input each of these functions into a graphing calculator, preferably

Desmos, to see where our optimal solution will lie. Begin by opening a blank graphing space

within Desmos. It is often easier to visualize our feasible region when the surrounding region

is colored in and the feasible region is shown as empty space, so it is recommended to write

functions using the opposite sign. For example, the functions x ≥ 0 and y ≥ 0 allows for

the areas that satisfy these constraints to be left blank, rather than writing it as x ≤ 0 and
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y ≤ 0. Once this has been done for each of the constraint functions, we now see the feasible

region fully surrounded by boundaries on each side. Now, the objective function will be

added. When adding the third variable of Z to the function, verify that Z will be added as a

slider. This will allow you to manually adjust the value of Z to see what the maximum value

that Z can be, while still lying within the feasible region. Note that it will often be required

to adjust what the maximum value we can input into Z, as the values in this equation are

moderately large. We can go ahead and adjust this value to 750.

As we begin to move our slider throughout the feasible region, we eventually see that the

last point that the objective function is within the feasible region before moving out of it is

at the corner point between our functions y ≤ 100 and 12x + 12y ≤ 1800. This represents

what the maximum value that our objective function can produce while staying within our

given constraints, giving us our optimal solution. We see when clicking on this point that

our optimal solution is to produce 50 paper back books and 100 hard cover books each day,

resulting in a daily profit of our Z value, $750. We can see the final graph of our feasible

region with its optimal solution below in Figure 1.
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Figure 1: The Feasible Region

Solving Higher Dimension Problems

As problems become more complicated (or contain any number of variables greater than

2), a graph is no longer a feasible way to determine the solution to a linear programming

problem. A common method for solving more complex problems relatively efficiently is the

Simplex Method. Though this method can be performed by hand, it is typical, especially

after reaching a certain level of complexity, to instead solve using a program such as Excel,

which is what we will demonstrate below. Using Excel’s Solver feature, determining and

inputting the objective functions, constraints, and variables into Excel will allow for Excel

to compute all calculations and find the optimal solution to a linear programming problem

without any additional computing from the person solving. Below is an example of a linear
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programming problem being solved using Excel 365 for Windows 10.

Four Variable Example: A car shop sells four different types of wheels, with each increas-

ing in price as quality and size increases. The smallest size (Tire A) sells for $60, with the

others being $90, $150, and the most expensive being $240 (referred to as Tires B, C, and D,

respectively). The shop can only buy and store up to 100 total tires each week, but the store

wants to hold at least 5 of each tire type at the start of each week. Certain producers can

only make certain tire types, with the producer of Tires A and B having 70 labor hours in

total available each week for their production, while Tires C and D have 150 hours available

each week from their producer. Each Tire A requires one hour of labor, Tire B requires two

hours, Tire C requires 3 hours, and Tire D requires 4 hours. Find the number of each tire

type that should be stored at the tire shop each week that satisfies all constraints, while

maximizing profit.

Solution: First, we must set up our problem. Below are our list of variables, our objective

function, and each of our constraints.

Variables: Number of each product to make

• Tire A: x1

• Tire B: x2

• Tire C: x3

• Tire D: x4

Objective (Maximize profit): Z = 60x1 + 90x2 + 150x3 + 240x4

Constraints:

• At least 5 of A: x1 ≥ 5

• At least 5 of B: x2 ≥ 5

• At least 5 of C: x3 ≥ 5

• At least 5 of D: x4 ≥ 5
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• At most 100 tires can be stored: x1 + x2 + x3 + x4 ≤ 100

• Labor hours for A and B: x1 + 2x2 ≤ 70

• Labor hours for C and D: 3x3 + 4x4 ≤ 150

We will now insert these variables and equations into Excel in order to solve.

In a new Excel sheet, use cells A1:A4 to list names for each of the four variables (i.e.

write “x1” in Cell A1, “x2” in Cell A2, etc.). The cells to their right, B1:B4, are what the

program recognizes as representing the four variables, with their names listed to their left for

our understanding. In a cell further below, say cell B8, write the objective equation

= 60 · B1 + 90 · B2 + 150 · B3 + 240 · B4.

This shows our objective function with our variables represented by the cells that Excel

considers to be the variables, B1:B4. We will then list our six constraint functions below. In

cells B10 through B16, we will list the left hand side of each of our six equations, with Tire

A again being referenced as B1 and so on. We will then use cells C10 through C16 to list

the inequalities of each of our six constraints. Finally, cells D10 through D16 will have the

right hand side of each of our equations listed. See Figure 2.

Figure 2: The set up in Excel
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We will now input this information within the Solver function in order for Excel to solve

the problem. After clicking on “Solver” within the Data window a panel appears (Figure 3).

We will then select cell B8 within “Set Objective,” as that is our objective function. Next,

because we are maximizing our objective function, we select “Max” after the prompt “To.”

We then select cells B1:B4 as “By Changing Variables Cells” to show that these cells will

represent the variables that will be changed within the problem. We will then create our

constraints.

For each constraint, we will press “Add” to the right of the “Subject to the Constraints”

box, which will be filled with our list of constraints. Within the “Add” window, we select

the cell acting as the left hand side of our constraint as our “Cell Reference,” choose the

inequality that is used within the constraint through the drop down, and then choose the cell

acting as the right hand side of our equation as our “Constraint.” For this problem, we would

also like for each variable amount to be an integer, as we cannot have a portion of a tire, so

we will add integer constraints for each variable. To do this, we will add to our constraints.

For each variable, we will choose their original reference cell (i.e., B1-B4) as their reference

cell, and then choose “int” where we had previously put our inequality. Saving these, we now

have all constraints added, including having each variable be an integer. Finally, we will use

the drop down next to “Select a Solving Method” to choose “Simple LP,” as we are solving

this problem through Simplex Linear Programming, and press solve. See Figure 3.
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Figure 3: The set up in Excel’s Solver

After pressing solve, Excel computed our optimal solution and placed the optimal values

for each of our variables into their reference cells, B1:B4. We see that the optimal solution

for this problem is to have 52 Tire A’s, 9 Tire B’s, 6 Tire B’s, and 33 Tire D’s at the store

each week. Figure 4 shows how our final screen will look.
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Figure 4: The solution in Excel

From viewing our final solution in Excel, we can see how each constraint influenced the

final solution to our problem. We can see that each of our three constraints that limited

the total number of tires created, i.e., having the total number of tires at or below 100

and having the labor hours for the two groups of tires at or below certain values, were each

maxed out and prevented any further tires from being produced. We also see that each of our

constraints that prevented each tire production from being lower than 5 were not used as no

tire amounts were at the minimum value of 5. Due to this being a problem of maximization,

it makes sense that our limiting constraints were used, while our constraints that needed to

be exceeded were exceeded naturally without the influence of the constraints.

Occasionally, a linear programming method will not have a possible solution. If this is

the case when solving in Excel, the Solver will tell you after Solve is pressed, and will find

the closest solution while breaking as few constraints as possible. Excel will also give you the

option to view the answer and sensitivity reports, which gives further information about our

final answers. This includes the solution to our objective equation, whether each constraint

was binding, and the amount of slack left in each constraint. This information can be helpful
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for further analysis. Following our example, the general idea of linear programming should

now make sense and we can move on to the addition of chance constraints.
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Chapter 2: Introduction to Chance Constraints

Our above examples show cases of traditional linear programming problems; real world

examples typically will not have all values within the problem’s constraints or objective

functions known. The most common example of this is having the right hand side values

of the problem’s constraint functions unknown. For instance, in the above example, it may

instead be unknown what the true minimum value is for the amount of each tire needed to

be stored, the most amount of tires that can be stored, or the total labor hours available.

Rather, there may be a range of possible values that each constraint will fall within, or even

an unknown range that has long tails to either side, before we eventually learn the true value

later on after the optimization has been completed.

When the right hand sides of a constraint each contain a range of possible values instead

of a single known value, one possible way to alleviate this is to use robust optimization. Us-

ing robust optimization, the most extreme values that are opposite of the operation will be

used to ensure that the final solution will have the true values of the constraint satisfied and

will exist within the feasible region. For example, if a constraint asks that the summation of

values will be less than or equal to the right hand side, which is a range of possible values,

using the minimum value within that range will ensure that if any other values within the

range are the true value, the constraint will continue to be satisfied [6]. Though this method

often results in conservative values being chosen for each variable or resource, this can often

be necessary when working with constraints that cannot be broken without extreme conse-

quences, meaning that it is in the best interest to solve using the most extreme constraint

values in order to be certain that all possible values will be satisfied. Such constraints are
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called “hard constraints.”

However, many of these fuzzy right hand side values do not have a clear range of values,

and often can allow for small violations without severe consequences. These constraints

with room for violation, or soft constraints, and unknown ranges for the right hand side can

then be best solved through the use of chance constraints. Chance constraints determine a

solution based on the likelihood that it will satisfy a certain probability of possible values for

the constraints. For example, if the exact value of the right hand side value, b, is unknown,

but is a random variable with a normal distribution of possible values, we are able to use µ

and σ of the random variable to find which value to use to ensure that the solution has a

certain probability of satisfying the constraint, such as 95% or 99%. Thus, if the true value

does happen to not fit within these large intervals, the soft constraint will allow for this

small violation to be acceptable. Though these large probabilities will again often result in

conservative constraint values similar to that of robust optimization, not taking into account

the final values within the tails of the distribution will at least prevent overly conservative

values based on very unlikely scenarios. Also note that in this paper, we will be focusing on

the use of normal distributions for our random variables.

As we had previously seen, the general form of a linear programming constraint will align

with the following:

n∑
j=1

ai,jxj ≤ bi, i = 1, ...,m

The addition of the random variable for the right hand side, b, changes this to the

following:

Pr(bi ≥
n∑

j=1

ai,jxj) ≥ α, i = 1, ...,m.

With α being the probability that is wished to be used, meaning that the probability
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that the constraint is satisfied is greater than or equal to the value of α.

As we are often working with normal distributions, satisfying this value of α can be

accomplished using the mean and standard deviation of the random variable b. By manipu-

lating our above equation, we can reach the following:

Pr

(
bi − µ

σ
≥
∑n

j=1 ai,jxj − µ

σ

)
≥ α, i = 1, ...,m.

This now allows bi−µ
σ

to be a random variable represented by the standard normal, mean-

ing that it is now based on a normal distribution of µ = 0 and σ = 1. Furthermore, this

constraint will hold if the following equation is satisfied.

(∑n
j=1 ai,jxj − µ

σ

)
≤ Zα

Where Zα represents the number of standard deviations that the given value lies from µ.

This can be found from solving for Zα in the following integral:

∫ ∞

Zα

1√
2π

e−x2/2 dx = α.

This integral equals the area, α, of the normal distribution that lies between the value

of Zα until the end (far right-tail) of the distribution, or infinity. Though this integral can

be used to solve for Zα by plugging in the value of α that is wished to be used for the

probability, the complexity of the integral makes for difficult solving. As the values in the

integral are not unique to a particular problem, the potential values for Z are often shown

in a table to make for easy finding, such as the one below.
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Figure 5: Table for a Normal Distribution [16]

To find the Zα associated with our chosen α value from the table, we first find α in

the center of the table. Occasionally, our α value will not be listed, and we will have to

interpolate between the two closest values on either side of it. If α is listed, we find the

associated Z value by combining the Z value listed in the left-most column of our current

row, and the above-most row of our current column. For example, if we are looking for the

Z value associated with 97.5% probability, we find .9750 in the table and see that the Z

value is 1.96.

Another way of finding the new right hand side values for our constraints is to use the

function
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norm.inv()

within Excel. In the cells in which we would have inputted our right hand side values for

our equations, we can instead input the equation

=norm.inv(rand(), mean, sd),

with the probabilities, means, and standard deviations listed for that constraint, and it will

give us the lower bound value for that probability.

When each individual constraint is given a certain probability that it must fall within, this

is considered having single constraints, which is how we will solve the example below.

Example Using Single Constraints:

Returning to our car shop, the shop contains the same constraints on tire amounts and labor

hours, however these constraints now have unknown right hand sides due to variations in

the amount of other supplies that may be in the store in a given week, and who will be

working. Each right hand side value is based on a normal distribution, and we will look at

each constraint one by one.

• When looking at the total number of tires that can fit in the shop, the mean number

of tires that can fit is now 100, the original upper bound, with a normal distribution

and a standard deviation of 4 about the mean. The new equation for this constraint

will look as follows:

A+B + C +D ≤ 100 + Zα · 4

• The minimum number of tires that the store would like to hold each week will not be

changed.

• The labor hours available for Tires A and B will now also be unknown, with a mean of

70 and a standard deviation of 2.5 (within a normal distribution). The new equation
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for this constraint will look as follows:

A+ 2B ≤ 70 + Zα · 2.5

• The labor hours available for Tires C and D are also now unknown, with a mean of

150 and a standard deviation of 6.7 (within a normal distribution). The new equation

for this constraint will look as follows:

3C + 4D ≤ 150 + Zα · 6.7

Note that, though we are adding our Zα · σ2 value to µ, our Zα will be the negated value

of what is found in the table, as we are looking at the proportion of values greater than

our α probability. Therefore, this term will actually be subtracted from our µ rather than

added.

We are again looking to find the number of each tire type that should be stored at the

tire shop each week that satisfies all constraints, while maximizing profit. However, as each

constraint has a long tail of possible values for the right hand side, we will not be able to

be certain that the constraints will be satisfied 100% of the time. For this example, we

will look at each constraint having a 95% probability that they will be satisfied (α = 0.95).

Though this is not a plausible method for hard constraints, 95% probability is typically

a satisfactory value for many soft constraints, and this value can be adjusted for different

problems depending on the severity of consequences for breaking constraints. Note, however,

that an increase in the probability that a constraint is satisfied will increase the range that

we are allowing for our value to fall within, making our solution more conservative and less

specific.

To find the Z value associated with the α = 0.95, we return to the table in Figure 7. We

see that this value is not listed, so we instead must interpolate the values associated with
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alphas 0.9495 and 0.9505. We see that the Z value associated with an alpha of 0.9495 is 1.64

and with alpha 0.9505 is 1.65, so we are able to interpolate these two points to conclude

that the Z value associated with the alpha of 0.95 is 1.645. This means that there is a

95% probability that the true value will be less than 1.645 standard deviations from our

mean. We will now add this value to our constraints and construct a list of our finalized

constraints.

• A+B + C +D ≤ 100− 1.645 · 4

• A+ 2B ≤ 70− 1.645 · 2.5

• 3C + 4D ≤ 150− 1.645 · 6.7

Final Constraints:

• A+B + C +D ≤ 93.42

• A ≤ 5

• B ≤ 5

• C ≤ 5

• D ≤ 5

• A+ 2B ≤ 65.8875

• 3C + 4D ≤ 138.9785

Now, our constraints look like typical linear programming constraints, and we can input

our problem into Excel as we had done previously.
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Figure 6: Setup in Excel

Solving, we will get our revised final solution.

Figure 7: Solution in Excel

Our adjusted optimal solution is now to have 49 Tire A’s, 8 Tire B’s, 6 Tire C’s, and 30

Tire D’s, for a weekly profit of $11,760. Note that, again, each of our limiting constraints
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were maximized, while none of our constraints requiring a maximum were needed. The only

tire that did not see a decrease in total was Tire C, while the profit also decreased by almost

$1,000. This method of solving within Excel was also described in Hillier and Lieberman

[6].

Though we decreased our profit when we lowered our right hand side values, we raised

the probability that each chance constraint will be satisfied from 50% (when only values

less than the mean would be satisfied), to 95%. However, this confidence decreases when

each constraint contains this probability. When two constraints each have a 95% probability

of being satisfied, the probability that both will be satisfied is only .95 · .95 = 0.9025, or

90.25% probability. For this example, since three constraints each have a 95% probability

of being satisfied, the probability of all constraints being satisfied becomes .953 = 0.8574,

or 85.74% probability. Each increase in the number of chance constraints used only further

lowers this probability of all constraints being satisfied. It is often advised to use a much

higher probability value when working with many constraints to keep the total probability as

high as possible, though this will lower the value of the optimal solution even further.

Joint Constraints:

As mentioned above, taking individual probabilities for each constraint with a random vari-

able to the right hand side will greatly decrease the overall probability that each constraint

is satisfied with the addition of each such constraint. We saw that for our above problem,

the probability that all three such constraints will be satisfied using the above method of

single constraints drops from 95% to 85.74% when satisfied together, and would only con-

tinue to drop as more are added. As mentioned, one solution can be to simply increase the

individual probabilities to a value that is high enough to allow for our overall probability to

be within an acceptable range. For our above problem, if we instead preferred for the overall

probability to be 95%, we can take the cube root of .95 to see what individual probabilities

will be needed to make this possible.
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3
√
.95 = .97468

Thus, if each single constraint was solved using 97.468% probability, the overall proba-

bility that all three constraints will be solved will be 95%.

However, an alternative method for looking at the constraints as a combined probability is

the method of joint constraints. This method is typically necessary when the constraints are

not independent, so the above method of simply adjusting α to satisfy an overall probability

will not account for the relationships between constraints values. Attempting to account

for this relationship adds great complexity to the problem, which we will illustrate in the

example below.

Example: A seamstress is hand-knitting two versions of the same shirt that she would

like to sell, each made from yellow and orange yarn. The long sleeve shirt that she is making

will sell for $48, but requires additional materials compared to the short-sleeve shirt she is

designing, which will be sold for $39. Each long-sleeve shirt will require 2 yards of yellow

yarn and 1.5 yards of orange yarn, whereas each short-sleeve shirt will require 1.45 yards of

yellow yarn and 1.15 yards of orange yarn. The only constraints that she has on the amount

of shirts she can make each week is the amount of yarn that she has available, which will

often be unknown until the start of the week. If the availability of each yarn type is a random

variable with normal distribution of µ = 15 yards and σ = 1.1 for yellow yarn and µ = 12

yards and σ = .9 for orange yarn, what is the optimal number of each shirt that she should

knit each week to maximize profit and allow her to be 95% confident that each week she will

have enough yarn for the number of shirts that she plans to make?

Discussion of Solution: At first glance, this example seems to be able to be solved

similarly to our most recent example, with the exception of our α being the square root

of .95 to allow for the overall probability to be .95 for both shirts. However, as both of

our constraints are related to the availability of similar resources, it is not unreasonable to
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assume that the weekly availability of these resources are related to one another and their

probabilities are not independent. In fact, this is often true even for resources that may

not be as similar to one another as those in this example, as supply chain issues that affect

supply amount are often far-reaching.

Before solving, we will first visualize the set up of the problem without the addition of

joint constraints.

Variables: Number of each shirt type to make

• Long-sleeve shirt: x1

• Shirt-sleeve shirt: x2

Objective (Maximize Profit): Z = 48x1 + 39x2

Constraints:

• At most 15 yards of yellow yarn: 2x1 + 1.5x2 ≤ b1

• At most 12 yards of orange yarn: 1.45x1 + 1.15x2 ≤ b2

When previously solving using typical chance constraints, we would have begun solving

this problem by finding the Z values needed for each right-hand side of our two constraints,

using the below probability.

P

(
n∑

j=1

aijxj ≤ bi

)
≥ α, i = 1, 2

However, due to non-independence, the two separate probabilities that we had for our

two constraints must now be combined into a single probability.

P

(
n∑

j=1

a1jxj ≤ b1 and
n∑

j=1

a2j ≤ b2

)
≥ α

Our previous probability would have been able to be solved for by converting the normal

distribution into the standard normal and simply finding the Zα value from the table as
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mentioned before, which is no longer possible by the existence of two constraints at once.

The solving of this joint probability leads to a non-linear vector constraint based on a product

of multi-variate normal distributions.

Reworking the earlier-mentioned equation that found the value of Zα from the integral

for the area under the normal distribution, the multi-variate normal pdf is:

f(x⃗) =
1√

2π|
∑

|
e−(x⃗−µ⃗)T

∑
(x⃗−µ⃗)

With the additional components being the following:

• x⃗ is the vector of random variables

• µ⃗ is the vector of means of the random variables

•
∑

is the variance-covariance matrix with the diagonal values being σi, the standard de-

viation for the random variables, and the off-diagonal elements being σij, representing

the covariance of xi and xj

• |
∑

| represents the determinant of
∑

Solving this is extremely difficult, and requires additional knowledge on the relation-

ship between xi and xj. This complexity has resulted in this method being rarely used

unless necessary, such as in financial settings when non-independence between constraints

cannot be ignored. However, despite the complexity and rarity of its use, the allowance

that joint constraints have given to the solving of these linear programming problems with

non-independent chance constraints has cemented the importance of joint constraints within

our overall discussion of chance constraints.
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Chapter 3: Historical Development of Chance

Constraints

As previously mentioned, the development of operations research and linear programming

first became formalized during the 1940’s, as wartime operations required a more definite

method for determining optimum efficiencies in the creation of wartime supplies. As these

methods quickly spread to other industries, it was then realized soon after that methods for

handling constraints with uncertain values within linear programming problems needed to

be developed, as well.

Several methods have since been developed to handle different variations of constraints,

with robust optimization being a notable further step. Though not developed until relatively

recently, robust optimization alleviates issues related to problems containing hard constraints

whose values exist within set ranges. However, robust optimization was not able to combat

issues related to soft constraints with large distributions, in which long tails on either side

of the distribution prevented a definite range of values from being available to minimize.

Though soft constraints do allow for violations, it was still necessary to create a method

that kept these constraint values that may exist within these indefinite values as close to

satisfied as possible. This resulted in the development of chance constraints [6].

The concept of chance constraints was first introduced by mathematicians A. Charnes

and W. W. Cooper in a 1959 paper titled “Chance-Constrained Programming” [2]. In their

six page paper, Charnes and Cooper describe “chance-constrained programming,” or linear

programming using chance constraints, as a method to solve problems containing “random

variables with known distributions in such a manner as (a) to maximize a functional of
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both classes of random variables subject to (b) constraints on these variables which must be

maintained at prescribed levels of probability.” Charnes and Cooper use a two-step method

and an example involving tankage facilities and their supplies of oil to showcase the workings

of this method. Though there has been mention of other mathematicians possibly having

invented a similar method previously to this, this is the most clear definition given up until

this point, and led the way to the method becoming commonly-used to solve problems of

this form [5].

Though “Chance-Constrained Programming” was the first official mention and coining of

chance constraints, the paper makes reference to four earlier works that laid the groundwork

to this development. The most notable of these is the 1958 paper “Cost Horizons and

Certainty Equivalents: An Approach to Stochastic Programming of Heating Oil,” written

also by Charnes and Cooper, as well as G. H. Symonds [1]. This paper describes a similar

approach to that of “Chance-Constrained Programming,” in which probability is used to

determine an acceptable value for each constraint. A note in this paper about being the

first in a series of papers to discuss this topic also gives insight into the ultimate goal of the

publication- to set the scene for the eventual release of “Chance-Constrained Programming”

in the following year. Comparing the lengths of these two papers as well, with the 1958

release being 27 pages and “Chance-Constrained Programming” being only 6, may also

demonstrate that the initial release was intended to provide initial descriptions to chance

constraints in order to allow the official introductory paper to be as concise as possible.

Their 1958 paper also makes reference to 22 former papers, 8 of which co-written by A.

Charnes, further showcasing the amount of previous work that led to the eventual coining

in 1959.

Charnes and Cooper released several other papers further discussing chance constraints

in the years following the release of their 1959 introductory paper, including the 1962 paper

“Chance Constraints and Normal Deviates” [3] and the 1963 paper titled “Deterministic

Equivalents for Different Objectives in Chance-Constrained Programming” [4]. These each
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discuss different applications of chance-constrained programming, as well as delve further into

specific topics related to chance constraints. This continued release of papers by Charnes

and Cooper related to chance constraints illustrates the value that the two mathematicians

believed that the method had within mathematics, and the work that they were willing to

put forth in order to cement it within the field.

During this time, other mathematicians within the field of operations research began

releasing their own papers utilizing and making reference to these concepts, as well. The

1961 paper “Some Reflections on Static Programming under Uncertainty” by H. Theil [15]

discusses the complicated and complex nature of linear programming with uncertain con-

straints, based on the idea proposed thus far of chance constraints and including examples of

several variations of possible problems that could exist. However, though he acknowledges

the complexity of the method, he also begins by making reference to the heavy focus that

there was at the 1957 Stockholm Conference of the International Statistical Institute on

wanting a method to solve programming problems with uncertainty. This reference show-

cased the overall frame of mind at the time in relation to this method; there was a clear

need for such a method within linear programming, and though it came with complexities,

Charnes and Cooper’s development in 1959 created a solution.

A look at the number of papers that include references to chance constraints further

illustrates the speed in which the method spread through different fields- with papers ranging

in content from further improvements or opinions on the method, to different applications.

The 1963 paper “Minimum-Cost Cattle Feed under Probabilistic Protein Constraints” by

C. van de Panne and W. Popp [12] is an example of this, in which chance constraints are

used within the traditional linear programming problem of cattle feed. The example also

includes additional variations to the initial discussion of chance constraints, such as having

the problem be static rather than dynamic. As one of the first papers to be released with

the overall focus being on the utilization of chance constraints, this application showcased

to others the practicality of the method, and made way for the normalization of chance
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constraints in solving linear programming problems with uncertain constraints. In the year

of its release, nearly 200 papers related to chance constraints were released, while 1970 saw

a jump to almost 700. This notable continues to increase over time, with 1980 seeing over

2,100 papers and 1990 seeing over 7,700 with mentions to chance constraints. Currently,

almost 17,000 papers have been released with a mention of chance constraints in this year

alone.

Though several of the above papers added additional insight and leverage to the develop-

ment of chance constraints, the next paper considered to impact the overall development of

the method of chance constraints following the initial coining was the 1965 paper “Chance-

Constrained Programming with Joint Constraints” by B. L. Miller and H. M. Wagner [10].

As mentioned above, the addition of joint constraints allowed for complex linear program-

ming problems with non-independent chance constraints to be solved for by using a singular

probability that needed to be satisfied by all constraints as a whole. Though complicated,

this allowed for a way for these more complex problems to be solved, which increased the

applicability and overall usage of chance constraints. Prékopa is also often credited with

helping develop joint constraints, and later releases the paper “On probabilistic constrained

programming” [14] in 1970, which proves topics related to the convexity of the feasible region.

Issues related to the complexity of convexity within chance constraint problems is considered

one of the major drawbacks to the method, and having any additional information on how

the convexity of the problems worked was greatly beneficial. This description of the ori-

gins of chance constraints is also further described in the dissertation “Chance constrainted

problem and its applications” [13].

In the years following its rapid initial developments, few major developments have since

been made to the method, with instead focus being on the improvement and applications

within individual fields. Just the development of joint constraints for the handling of non-

independent variables provided a new range of complex uses of the method, allowing chance

constraints to be employed in a much broader range than traditionally considered. Currently,
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new developments are focused on utilizing chance constraints in other processes, such as

process-engineering and chemical-engineering problems under uncertainty [8]. Each of these

further discoveries illustrates the importance and range that chance constraints can have

throughout numerous fields, and how necessary the initial discovery by Charnes and Cooper

continues to be today.

29



Chapter 4: Applications of Chance Constraints

As we have seen mentioned above, there has been plenty of discussion on the numerous

uses and potential uses that chance constraints can have since Charnes and Cooper’s first

discovery of the method in 1959. From calculating the minimum cattle-feed cost in 1963 to

current explorations within chemical engineering feats, there is plenty to discuss in terms of

the overall applications of chance constraints within an array of real-world sectors.

The most classical applications of chance constraints include their use in energy alloca-

tion, water reservoir management, and risk management, with energy allocation often being

considered the most common application. Almost all forms of energy allocation, whether

from renewable or nonrenewable resources, require chance constraints to ensure that the nec-

essary amounts of resources will be available for consumers at all times. Though sustainable

resources are renewable by nature, many random variables exist in terms of the amount of

resources available at any given time. For example, when determining the optimal amount

of energy that can be obtained from a wind farm or a dam, variations in wind speed or rain

water amount cannot be determined with certainty, and probabilities must instead be used

to give a certain level of confidence in their productions of energy, without over-promising.

These probabilities in amount of resources are then computed with energy demand to deter-

mine with a certain amount of confidence the optimal amount of each resource that should

be expected [8]. APPsearch alone shows over 700,000 articles that include references to both

chance constraints and energy, illustrating how widely-used this method is for determining

these solutions.

Similarly, water reservoir management and risk management both contain numerous
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potentially-unknown variables, with great emphasis by many on determining their optimal

solutions. In terms of water reservoirs, there are great consequences for not determining the

correct threshold that water can reach within a reservoir, while great variability exists in

the possible amount of water that could be present in one at any given time. The opposite

can also be true, with instead of the risk of overflowing being the main concern, instead

the risk of water scarcity and not having enough water available for the overall demand is

often just as concerning [8]. An excellent example of the latter is the 2017 paper “Chance-

Constrained Dynamic Programming for Multiple Water Resources Allocation Management

Associated with Risk-Aversion Analysis: A Case Study of Beijing, China” [9], which uses

chance constraints to look at the high risk of potential water scarcity within Beijing, China

to determine the best solution to water resource allocation. Overall within water reservoir

management, chance constraints are used to determine the correct size that a water reservoir

should be, while minimizing the optimal solution of cost and using probability to ensure to a

certain confidence that the threshold for water will not be exceeded, while not being certain

of the potential water amounts that could be present.

In terms of the use of chance constraints within risk management, there is of course

much volatility within the stock market and when predicting overall market conditions,

making it impossible to be certain that an investor will not end up losing money within any

given investment [8]. However, past knowledge can be used to determine within a certain

probability the likelihood that certain events will take place, allowing an optimal decision

to be made in terms of the amount of money that should be invested at any given time

into certain stocks. Though investment companies will formally use the method of chance

constraints in these situations, almost everyone that invests uses a loose version of chance

constraints to try to determine the amount of risk that is associated with any potential

investment, and using the to determine the optimal amount that should be invested. From

there, this loose version of chance constraints can be applied to almost all instances of people

weighing potential risks to determine their optimal solution to a situation.
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In addition to the traditional applications of chance constraints, there have been many

uses of the method within technology that have begun appearing in the past several years,

which illustrate the direction that chance constraint applications are moving towards in the

future. As we have recently seen an exponential rise in the different uses and possibilities

of technology, it is no surprise that the use of chance constraints is not far behind. With

each additional push in technology, often additional room for error is introduced that must

be accounted for. For example, the innovation of self-driving cars included finding solutions

to the many random variables that can exist when driving, such as any potential obstacle

that can occur in the road or errors in any of the cars mechanics. Chance constraints

are used to determine the likelihood of these different events occurring, and factoring this

into determining how these obstacles and errors will be avoided [7]. Even space exploration

utilizes chance constraints to handle a number of unknown variables, from problems regarding

the take-off and landing of space crafts to determining their optimal flight path [11]. Each of

these problems quickly become exponentially more complex than the traditional examples

using resource allocations that we originally looked at, but they illustrate the direction that

chance constraints are moving in, and the potentials that they have.

Overall, chance constraints are an integral part of many fields, used to understand and

account for risk in countless scenarios. The potential uses of the method has expanded

greatly in the over 63 years since its initial inception, and it is clear that there are many

more potential uses yet to be discovered.
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